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Theoretical problems connected with calculations of the Henry and Nernst constants are outlined. 
A dissolution of an inert gas in a solvent is treated in terms of enthalpy and entropy changes 
which can be expressed in terms of two contributions: the cavity formation process, and the inter-
action between a solute molecule (introduced into the cavity) and the surrounding solvent mole-
cules. Calculation of AH for the solute-solvent pair interaction is based on empirical estimates 
of Coulomb, polarization, dispersion, and repulsion terms. A simple statistical-thermodynamic 
treatment has been used for estimates of AS of interaction. The computational scheme has been 
used for systems of C H 4 in CC14, C H 4 in H 2 0 , and for partitioning of C H 4 between CC14 and 
H 2 O . 

The importance of the Nernst partition coefficients in some separation processes1 and in partition 
chromatography 2 is well known. Moreover, for nearly eighty years it has been known that these 
coefficients have played an important role for quantitative evaluation of narcotic effects3 '4 . 
Work during the past 10—15 years has provided strong evidence that partition coefficients5 '6 and 
Henry constants do play a fundamental role in quantitative correlations between the magnitude 
of biological activity and structural characteristics. 

As early as 1939 Eley 7 ' 8 published the first study on calculations of solubility of inert gases 
in water (Henry constants) and on the comparison of organic solvents with water. Pierotti de-
scribed a method which permits to calculate thermodynamic characteristics of dissolution of sim-
ple molecules in nonpolar 9 and polar solvents1 0 . No attempt has yet been made on the same level 
of sophistication to calculate partition coefficients. However, Cammarata and c o w o r k e r s 6 ' 1 1 ' 1 2 

have used a simplified perturbation t r e a t m e n t 1 3 ' 1 4 for the estimation of enthalpy changes of the 
partitioning processes. Their final expression for calculating the logarithms of partition coeffi-
cients between oil and water includes electron densities, and superdelocalizabilities of positions 
in the system under study. 

The most serious objection to this approach is the assumption that the entropy term is con-
stant which is most definitely not the case. Seemingly, one can pass to a less rigorous requirement 
using the linear relationship between enthalpy and entropy changes: 

AH = mAS + n , ( / ) 

* Part IV in the series Calculations of Absolute Values of Equilibrium and Rate Con-
stants; Part III: This Journal 39, 729 (1974). 
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where m and n stand for empirical constants. It is well known that Eq. (/) is nearly generally 
fulfilled1 5 '1 6 . There is strong evidence, however, that in our particular case Eq. (7) is not satis-
fied. Evans and Polanyi17 have found that Eq. (7) holds for polyatomic compounds (possessing 
at least 4 or 5 atoms) only in case of a given compound with a series of solvents but not in the 
opposite case. i.e. a given pair of solvents with a series of compounds. On the one hand, the re-
sults obtained by Cammarata and coworkers6 suggest that this circumstance is not too serious 
at least not for rough estimates. On the other hand, however, it is sufficient incentive to incite 
work on calculations of the entropy changes. 

It is well known that in case of partitioning of a nonpolar substance between a polar and non-
polar phase the equilibrium is shifted in favor of the nonpolar phase. It is so in spite of the fact 
that very frequently (perhaps always) the passage from a nonpolar to a polar phase is connected 
with a negative change18 of AH. Clearly, in all these cases when equilibrium is reached, the non-
polar substance is preferentially dissolved in the nonpolar phase and therefore AG is positive. 
The partitioning process must be accompanied by a relatively high and negative entropy change. 
This is qualitatively understandable: the solute is distributed in the polar phase1 8 more regularly 
than in the nonpolar phase. Let us add that a similar entropy changes is connected with a process 
of dissolution of a gas in a solvent: here the significant entropy decrease is due to the strong 
reduction of the translational partition function. (A more sophisticated treatment requires 
also an adequate reduction of the rotational partition function which, however, is usually included 
in the configurational integral.) 

The subject of this work is the investigation of the application of theory of weak 
intermolecular interactions and of statistical thermodynamics to the calculation 
of the Henry constants and the Nernst partition coefficients. The aim is to calculate 
absolute values of these characteristics for the simplest systems with minimal use 
of experimental data. 

CALCULATIONS 

Thermodynamic relations. Both processes under study are typical thermodynamic 
(equilibrium) processes. Schematically we write: 

(Henry's law) A(1) t A(8) (2) 

(Nernst law) A (1) A (2) (3) 

K - PA _ VJA -AH0O/RT (d\ 
(H) { ) 

A \Lk 

r(2) n ( 2 ) K 

v — A — -A Ho°/RT _ (HI) / r \ 

(N) " 71) ~ O^ ~ K ' ^ 

For the thermodynamic equilibrium constants the following relationships are valid: 

AG0 = -RTlnK, (6) 
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A G 0 = AH0 - TAS° . (7) 

The symbols in Eqs (2) —(7) have their usual meaning, (2ap) stands for the partition 
function of the system A in the phase p. In order to evaluate absolute values of K 
the respective values of AH° and AS0 must be known. Calculations of these changes 
are based on quantum and statistical mechanics. 

Let us deal with the dissolution process which, basically, consists of two steps7,8. 
The first one is the cavity formation connected with the respective enthalpy and en-
tropy changes (AHc, ASC). The second step corresponds to the introduction of a mole-
cule into the hole; this introduction is characterized by interaction contributions 
AHj, and AS,, to the total enthalpy and entropy changes 

AH0 = AHc + AHj, (8) 

AS0 = ASC + A Sl. (9) 

Before passing to the evaluation of these contributions we need to specify models 
of polar and nonpolar phases. Water seems to be the most important representative 
of a polar phase and tetrachloromethane is chosen as a representative of a nonpolar 
phase which consists of quasisphere molecules. It has been shown19 that it is pos-

F I G . 1 

The Basic Coordination Unit in Water 
Regular pentagon dodecaeder ( • , o 

mean oxygen atoms of water molecules) (a), 
each bond is associated with a hydrogen 
atom (b). 

F I G . 2 

A Naive Model of a Nonpolar Liquid Phase 
Central molecule (©) is surrounded by li-

gands in the simple cubic structure. Atoms 
of first, second, and third shell are indicated 
by • , O, and *, and their distances f rom the 
central molecule are equal to a, *j2a, and 
7 3 A. 
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sible to form cavities in water very easily (with negligible enthalpy and entropy 
changes) consisting of 20 (regular pentagonal dodecaeder), 24, and 26 molecules 
of water at about 277 K, each being coordinated by four other water molecules. 
In Fig. 1 the basic coordination unit is visualized together with a regular pentagonal 
dodecaeder. There is a strong evidence19 that atoms (e.g. He, Rn) and small 
molecules (e.g. CH4, C2H6 , N 2 0 , PH3 , S0 2 , C102, CH3SH) are accomodated in these 
dodecaeders. Larger .molecules (e.g. C3H8 , (CH3)3CH, CH3J, CHC13) enter holes 
belonging to tetradecaeders and hexadecaeders, the former having two and the latter 
four hexagons. 

The situation with nonpolar molecules is less clear. Because of lack of data on struc-
ture of solid CC14 and its solutions we have chosen as the first approximation the 
simple cubic structure. Clearly enough, choice of another lattice would lead to a some-
what different value of interaction characteristics. In the lattice positions are located 
sphere-shaped molecules of the solvent (Fig. 2). In this figure the maximum number 
of ligands and their distances from the central molecule are specified. Obviously, 
some of the ligands are, depending on the temperature, substituted by holes. 

Enthalpy changes. Let us turn our attention to the evaluation of the right-hand 
terms of Eq. (8). A classical thermodynamic treatment16 leads, in case of AHc, 
to the following expression: 

where a l s /?1? and V2 stand for the coefficient of the isobaric expansion of the solvent, 
the coefficient of the isothermic compression of the solvent, and the molar volume 
of the solute. 

For the second term in Eq. (8) the following expression is valid16 

if we limit ourselves to the near-neighbours. <t>12 is the pair interaction energy solvent-
-solute, N is the Avogadro number, and c is the common coordination number 
of a molecule 1 in the bulk of the molecules 1, and of a molecule 2 in bulk of the mole-
cules 2, and of 1 (solute) in bulk of 2 (solvent). 

For the sake of simplicity let us start with dissolution of an inert gas in a solvent. 
In the majority of cases the forces acting between solute and solvent molecules are 
weak and, therefore, AH is small relative to changes found in chemical reactions. 
These forces are due to multipole-multipole interactions (e.g. dipole-quadrupole), 
to dipole-induced dipole, and induced dipole-induced dipole interactions (polariza-
tion and dispersion interactions). Dispersion energy forms a part of the correlation 
energy and, therefore, we cannot describe this contribution by means of the Hartree-
-Fock SCF method. This problem can be solved in principle by allowing for con-

(AfQT ,„ = y' TV2, (10) 

AH, = Nc 4>12 - RT C O 
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figuration interaction in the total wave-function. Because at least doubly excited 
configurations must be included, calculations on systems of chemical interest are 
of prohibitive size. Moreover, any variational type of calculation is connected with 
an inherent difficulty because what we need is a difference between two large and al-
most identical values. Therefore, a perturbation treatment is more suitable for this 
purpose. 

Expressions based on the CNDO/2 formalism are available in the literature20 

concerning the Coulomb, polarization, dispersion, charge-transfer, and repulsion 
terms. This formalism can be used for treatment of small molecules (e.g. methane 
and water) but at present is hardly applicable for extensive organic molecules. There-
fore, an empirical (but theoretically sound) expression seems to be the only realistic 
possibility. For our purposes a simplified form of the Buckingham2 1 '2 2 potential 
augmented by terms describing the Coulomb and polarization interactions is relevant: 
the contributions due to the individual atoms of both subsystems are summed up 
(Eq. (12)). 

E'"T - tttr^r+ C4M"C3 k/W + 

+ EE - ; GK( V,) + <U?X)2] + ZK(«A) + . (") 
i j rtj I p q 

where Cu C2, and C 3 are constants, Ri(Rj) are the van der Waals atomic radii, 
r ( j is the distance between the i-th and j-th atoms, qi is the net charge in position i, 
ctp{L) is the transversal (longitudinal) polarizability of the bond p, and r jp are 
unit vectors, Rip is the distance between the atom j (in system T) and the center 
of the bond p (in system R), Sp is the difference between aL

p and a j . Finally = 
T 

= Yl<ljlR]p) rjp- The terms in Eq. (12) correspond to the dispersion, repulsion, 
j 

Coulombic, and polarization interactions. 

Partition functions. It remains now to evaluate the constituents of the total entropy 
change (Eq. (9)) in terms of statistical thermodynamics; it is connected with more 
uncertainties than the evaluation of the enthalpy changes. For the sake of simplicity 
we shall again deal with a simple process of dissolution of an inert gas in a solvent. 

The calculation of the ASC part, however, is simple and straightforward. It has 
been shown7 that with plausible assumption the following expression holds: 

ASC = K2 , (13) 
HI 

where the symbols have the same meaning as in Eq. (10). 
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The ASj term is given as a difference between entropy of gas in cavities and entropy 
of the gas in the gas phase 7 . A derivation of the corresponding expression7 '8 in terms 
of parti t ion functions is rather involved and exceeds the scope of this contribution. 
Therefore, only a general comment will be made and final formulas will be presented. 

The total parti t ion funct ion for a molecule in the gas phase is usually given as a pro-
duct of translational, vibrational, and rotat ional functions. Its evaluation is straight-
forward, which is not the case with solutions. The main complications are as follows. 
The potential under which dissolved molecules move must be considered. This 
manifests itself in the configurational integral which forms a part of the translational 
partition function. The influence of the external field is also certainly not negligible 
with rotat ional functions. In the first approximation, however, the same vibrational 
parti t ion function for the solute in both phases can be used. The total parti t ion 
function for the solution consists of funct ion for both, the solute, and the solvent. 

The following expressions may be used for estimates of the total part i t ion func-
tions 7,f 

where 

C H 4 in H 2 0 : Q = — ^ , (14) 
N2\(NC - N2)l 

C H 4 in CC14: Q = + N ^ , (15) 
Nxl N2\ 

* - { ^ T Y ' 2 y j t 

where N x and N 2 stand for the number of solvent and solute molecules, N c is the 
number of cavities per mol, V is the available volume for the solute molecules, 
and J is the partit ion funct ion of the internal movements. 

More specifically we can write the following expressions for the interaction terms 
of the entropy changes: 

C H 4 in H 2 0 : S, = R In 
N c - N 2 3 , m 2 _ j , VfN 
— + - In — — + In t 

N, 

m d ln VF + T + T 
dT 

l m 2 

d N - N7 

V 
+ 

dT N, 
- 1 (16) 

C H 4 in CC14 Sl = R ln 
N{ + N2 3 , m2_l —•• + - ln ——-

N? 2 m7 
+ In 

V¥N 

V 
+ 

+ T 
d ln VF _ ' 

dT 
07) 
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Calculations of Henry Constants 805 

where N is the Avogadro number, m2 is the mass of the solute, m2 _ i is the reduced 
mass of the system solute-solvent, VF is the free volume of the gas molecule in solu-
tion, and Fis the volume of the gas phase under standard conditions (1 atm, 298 K). 

FIG. 3 

Potential Energy Curves for the C H 4 — H 2 0 Pair Interact ion (Eq. (12)) for Three Mutual 
Orientations 

The C - O distance (based on our model considerations) used in fur ther calculation is 
indicated by an arrow. 

FIG. 4 

Potential Energy Curve for the C H 4 — C C 1 4 Pair Interaction (Eq. (12)) 
The C - C distance used in fur ther calculations is indicated by an arrow. 
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E X A M P L E S 

Let us start with the calculations of the AHC terms which is a very simple task. The resulting 
values are presented together with the constants of Eq. (10) in Table I. 

The next step deals with the calculation of the AH 1 terms and is based on potential energy 
curves (Fig. 3) and on geometrical considerations: For the experimentally f o u n d 2 6 O- -O 
distance of 2-90 A in liquid water, the C---0 distance between the C atom in methane and the O 
atoms in twenty molecules of water amounts to 4-06 A. Accordingly, the respective potential 
curve of Fig. 3 leads to the pair interaction energy of —0-201 kcal m o l - 1 ; by means Eq. (11) 
we obtain easily for AHj —4-612 kcal m o l - 1 . A formally analogous treatment fot the CH 4 -CC1 4 

system (Fig. 4) leads to values also included in Table I. The C---C distance (between the C atom 
in C H 4 and the C atom in CC14) for the first coordination sphere amounts to 4-94 A. This distance 
corresponds to the pair interaction energy of — 0-521 kcal m o l - 1 (Fig. 4) and the coordination 
number c, of the first coordination sphere is equal to 6. For the next coordination sphere c equals 
12 and the pair interaction energy amounts to —0-061 kcal m o l - 1 . The interaction between 
solute and molecules of the third coordination sphere amounts only to —0-017 kcal m o l - 1 . 

We performed, moreover, a direct calculation of A H j for a model based on Stackelberg's19 

results on the solvation of methane by water molecules. Twenty water molecules were located 
at apexes of a regular pentagonal dodecaeder and a methane molecule was placed in the centre. 
The interaction energy between methane and twenty water molecules was found to be —5-431 
kcal m o l - 1 which corresponds to —6-023 kcal m o l - 1 for theAZ/j value. 

TABLE I 

Enthalpy of Cavity Formation and Enthalpy of Interaction (298 K) 

Process AHC, kcal m o l - l a A / / j , kcal m o l - 1 

C H 4 in CC14 4-253 - 4 - 5 8 6 
C H 4 in H 2 0 1-442 - 4 - 6 1 2 

a 1 0 % ( d e g - 1 ) amounts to 1 6 , 2 3 12-2 and 2-57 (CC14 and H 2 0 ) ; l O 6 ^ ( a t m - 1 ) amounts t o 2 3 

108 and 45-8 (CC14 and H 2 0 ) ; V2(cm3 m o l - 1 ) for C H 4 in CC14 and for C H 4 in H 2 0 amounts 
t o 2 4 ' 2 5 52-4 and 35-6, resp. 

TABLE II 

Entropy of Cavity Formation and Entropy of Interaction (298 K) 

Process ASC (eu) A S j (eu) 

C H 4 in CC14 14-27 - 1 9 - 9 3 
C H 4 in H 2 0 4-84 - 2 4 - 3 6 
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Calculations of Henry Constants 807 

TABLE I I I 

Thermodynamic Characteristics of Dissolution and Partition Processes (298 K) 

AH0 AS0 (eu) AG0 log K 
kcal mol - 1 kcal mol - 1 

Process 

obs 2 7 calc obs 2 7 calc obs 2 7 calc obs 2 7 calc 

(Hj) : C H 4 in CC14 

(H2): C H 4 in H 2 0 
(N): CH4(CC14)^± 

- 0 - 7 0 - 0 - 3 3 - 9-4 - 5-7 2-09 1-35 1-53 0-99 
- 3 - 1 8 - 3 - 1 7 - 2 3 - 8 - 1 9 - 5 3-92 2-65 2-88 1-94 

C H 4 ( H 2 0 ) 2-48 - 2 - 8 4 - 1 4 - 5 - 1 3 - 9 1-83 1-30 1-34 0-95 

The entropy changes will be evaluated by means of Eqs (13), (16), and (17). The obtained 
values o fA£ c and ASj are presented in Table II. 

It is an easy task to calculate the AC0 values, and the corresponding equilibrium constants 
by using the already obtained AH0 and AS0 changes. The tabulated' characteristics concern (a) 
dissolution of C H 4 in CC14, (b) dissolution of C H 4 in H 2 0 , and (c) the partitioning of C H 4 

between H 2 0 and CC14 (assuming that the mutual solubility of H 2 0 and CC14 is negligible) 
(Table III). In conclusion we can say that the procedure used could lead in near future to results 
of sufficient accuracy for practical purposes. Moreover, it seems realistic to expect a broad 
and deep expansion of our knowledge in the field of weak intermolecular interactions and of statis-
tical thermodynamics of solutions during the next decade. Then calculations of the Henry and 
Nernst constants could be an easy task. 
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